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Abstract. Implicit generative models have gained significant popularity for mod-4 4

eling 3D data and have recently proven to be successful in generating high-quality5 5

3D shapes. However, existing research predominantly concentrates on generating6 6

outer shells of 3D shapes, ignoring the representation of internal details. In this7 7

work, we alleviate this limitation by presenting an implicit generative model that8 8

facilitates the generation of complex 3D shapes with rich internal geometric de-9 9

tails. Our proposed model utilizes unsigned distance fields, enabling the represen-10 10

tation of nested 3D shapes by learning from watertight and non-watertight data.11 11

Furthermore, We employ a transformer-based auto-regressive model for shape12 12

generation that leverages context-rich tokens from vector quantized shape em-13 13

beddings. The generated tokens are decoded into unsigned distance field values14 14

which further render into novel 3D shapes exhibiting intrinsic details. We demon-15 15

strate that our model achieves state-of-the-art point cloud generation results on16 16

the popular ShapeNet classes ’Cars’, ’Planes’, and ’Chairs’. Further, we curate a17 17

dataset that exclusively comprises shapes with realistic internal details from the18 18

‘Cars’ class of ShapeNet, denoted FullCars. This dataset allows us to demonstrate19 19

our method’s efficacy in generating shapes with rich internal geometry.20 20

Keywords: Implicit Generative Models · Unsigned Distance Field.21 21

1 Introduction22 22

Continuous representations of data in the form of implicit functions are revolutionizing23 23

many research areas of computer vision and graphics. The idea of having a continuously24 24

learned implicit function to represent 3D data is efficient since these functions can rep-25 25

resent diverse topologies while being agnostic to resolution [12]. Recently, neural net-26 26

works have been successfully utilized to parameterize such implicit functions, leading27 27

to a wide range of applications for example in geometry representation [29,1,36], image28 28

super-resolution [10] or generative modeling [33,47,58].29 29

Implicit representations for 3D shapes are mainly categorized into two types. The30 30

first type represents the outer surface of a 3D shape as occupancy grids and the latter31 31

as distance fields. Occupancy networks [29] define the surface as a continuous deci-32 32

sion boundary of a deep neural network classifier whereas DeepSDF [36] represents a33 33

3D surface using a signed distance field (SDF). A significant benefit of using SDF is34 34

its easy extraction of the surface using the marching cubes algorithm [26]. However,35 35

many implicit neural networks based on SDF or Occupancy fields require 3D shapes36 36

to be watertight which are often not readily available. Atzmon et al. [1] propose a sign37 37

agnostic loss function to learn an SDF from non-watertight data; however, their model38 38

requires careful initialization of the neural network parameters and often misses thin39 39
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Fig. 1: This paper addresses generating 3D objects with rich internal geometric details.

structures. Another drawback of SDFs stems from their inherent nature, i.e., 3D shapes40 40

are modeled as inside and outside. The recently proposed works 3PSDF [8], NeAT [28]41 41

introduce the ’null’ sign along with conventional in and out labels of SDF. This addition42 42

enables the representation of both watertight and open surfaces. However, this approach43 43

needs denser sampling in order to insert a null layer in between the multi-layer surfaces44 44

to prevent surface artifacts.45 45

A simpler implicit representation for complex, potentially non-watertight surfaces46 46

can be given by unsigned distance fields (UDFs). In UDFs, the 3D shape is delineated47 47

through a regressive function that predicts the unsigned distance of a given point in48 48

space to the nearest surface of the 3D shape. This representation is capable of encoding49 49

multiple layers of internal 3D structures since distance values are not limited to only50 50

capturing inside or outside. However, the signless property of UDF’s makes it difficult51 51

to extract surfaces from the implicit fields. The standard marching cubes algorithm [26]52 52

cannot be used, as finding a zero-level set by detecting the flips between inside and53 53

outside is not possible with UDFs. Chibane et al. [13] proposed algorithms to extract54 54

point clouds comprising internal geometries from UDFs. Alongside, few works further55 55

demonstrated the use of UDFs for the task of shape reconstruction [12,57]. Nonetheless,56 56

shape completion/synthesis or novel shape generation with UDFs remain unexplored. In57 57

this paper, we present an approach which leverages UDFs’ capability to represent nested58 58

3D shapes to learn and generate rich internal details of 3D shapes, while ensuring the59 59

high quality and diversity of the generated samples.60 60

To facilitate the learning of complex shapes requires a suitable encoding of distant61 61

shape contexts. This is especially true when shapes with internal structures are consid-62 62

ered, local shape context is not sufficient to model long-range relationships for example63 63

between the overall height of a car and the shape or tilting of its seats (for example, the64 64

shape of seats in a sports car is quite specific). To facilitate the encoding of relation-65 65

ships at varying spatial distances, transformer-based models that leverage self-attention66 66

are the method of choice [53,14]. Transformers are proven to be effective in modeling67 67

data distributions and generating realistic samples in image generation [16], 3D shape68 68
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completion[55] and 3D generation tasks [31,11,59]. Unfortunately, transformers can69 69

not directly learn from UDF representations since they rely on discrete token represen-70 70

tations. Leveraging the advantages of transformers for shape generation with internal71 71

structure is therefore non-trivial. In this paper, we contribute the following:72 72

• We present an implicit neural network-based generative framework to properly73 73

learn to generate 3D shapes with internal details while modeling long-range shape74 74

dependencies in the form of a sequence. This type of shape-dependent sequencing75 75

effectively integrates transformer-based shape learning with UDFs.76 76

• Our generative model can learn from both watertight and non-watertight 3D data.77 77

Also, it is capable of generating diverse topologies, while focusing on external78 78

shapes as well as internal details.79 79

• We demonstrate that our method outperforms previous point cloud generation ap-80 80

proaches in terms of qualitative and quantitative results on different ShapeNet cat-81 81

egories as well as on the FullCars dataset, a dataset curated from ShapeNet ’Cars’82 82

with internal geometric details and non-watertight surfaces.83 83

2 Related Work84 84

Generative Adversarial Networks A standard generative model used in computer vision85 85

applications is the generative adversarial network (GAN)[17]. Recent works [10,24]86 86

have shown 3D shape generation combining implicit neural networks and generative87 87

adversarial networks. However, the quality of output suffers from mode collapse and88 88

catastrophic forgetting due to the instability of GAN training [25,50].89 89

Score-based Models Another form of generative models is denoising diffusion proba-90 90

bilistic models, also known as score matching models [22,20,49]. The main principle91 91

of these models is that they model the gradient of the log probability density function92 92

with respect to the real sample. Diffusion models have achieved state-of-the-art in many93 93

downstream tasks such as super-resolution, and data generation [45,3,6,58].94 94

Likelihood-based Models Variational autoencoders (VAEs) and auto-regressive models95 95

(ARs) are two commonly used likelihood-based models. Both aim to learn a probability96 96

distribution over the input data. While VAEs are fast at inference time, their generation97 97

quality is often inferior compared to that of GANs[23,44]. Conversely, auto-regressive98 98

models (ARs) can represent data distribution with high fidelity but generate samples99 99

slowly [35,43,38,5]. To overcome the limitations of these two model types, hybrid100 100

models combining auto-regressive transformer models and vector quantized VAEs have101 101

been proposed [16,55,31,59,11]. Our proposed method builds upon this hybrid model102 102

setup and focuses on generating 3D shapes with internal structures. Our generation ap-103 103

proach is related to previous works like ShapeFormer[55] and Pointcloud VQVAE [11].104 104

ShapeFormer[55] utilizes a latent transformer architecture to learn from compact and105 105

discretely encoded sequences that approximate 3D shapes, specifically for 3D shape106 106

completion utilizing occupancy fields. However, ShapeFormer does not address the task107 107

of unconditional shape generation and works on only watertight data. Moreover, they108 108
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also employ a local pooled PointNet model [42] for feature extraction, which can limit109 109

the expressiveness of the feature embeddings. Conversely, Pointcloud VQVAE[11] uses110 110

a learned canonical space to align semantically similar point cloud categories into se-111 111

quences and employ a latent transformer model similar to ShapeFormer to learn these112 112

point cloud sequences. However, this method is restricted to point-cloud generation with113 113

a fixed number of points and lacks an implicit representation of 3D shapes, limiting their114 114

ability to generate arbitrary resolution shapes or shapes with internal structures. In con-115 115

trast, our method utilizes implicit representation of 3D shapes along with incorporating116 116

locality inductive biases, as in CNNs, in extracted features that allow for tractable fea-117 117

ture embeddings. Therefore, we opt for using an IF-Net-based [7] encoder. Also due to118 118

our representation of 3D shapes using UDF, our method offers the ability to generate119 119

novel shapes with internal structures and is not constrained by watertight-only models.120 120

Implicit Neural Generative Models In recent years, neural implicit networks have121 121

gained significant attention for their efficacy in 3D representational learning, as for122 122

example in [37,30,1,41,48,46,61,21,19,8,57]. While several models have explored im-123 123

plicit representation for 3D surface reconstruction, only a few have used it for 3D model124 124

generation [58,19,59,31]. In general, these works rely on a type of neural representation125 125

that encapsulates a 3D surface by taking a spatial coordinate value as input and outputs126 126

a parameter, ones or zeros for points inside or outside the surface [30] or a signed dis-127 127

tance from the surface [37]. However, as mentioned before, these representations do128 128

not preserve the multi-layer geometry of 3D shapes. Recently, NDF [13] and GIFS [57]129 129

have demonstrated that UDFs are capable of representing inner details within 3D mod-130 130

els. Despite its advantages in representation power, learning UDF is more challenging131 131

than learning SDFs. UDF prediction is a regression problem while SDF and occupancy132 132

field prediction are usually cast as classification problems. This makes the training us-133 133

ing UDFs more difficult, requiring more sophisticated regression algorithms. Replacing134 134

SDF with UDF is not expected to work right away. Additionally, due to the lack of sign135 135

in the UDF representation, the model requires a sign-agnostic loss function along with136 136

careful initialization of neural network parameters and is, therefore, harder to learn than137 137

SDF [1,8]. In this paper, we propose a deep implicit generative framework that utilizes138 138

UDFs to generate high-quality 3D models with internal geometric structures. Our work139 139

highlights the potential of UDFs in generating rich 3D models. This has significant im-140 140

plications for various applications, such as product design, robotics, CAD designs, and141 141

medical imaging, whereby internal geometries are crucial for accurate modeling and142 142

simulation.143 143

3 Method144 144

The objective of this work is to leverage the representational power of unsigned distance145 145

fields (UDF) in order to implicitly model 3D shapes while retaining their internal geo-146 146

metric details. To achieve this goal, we utilize the learning capabilities of transformers147 147

and incorporate UDF-based implicit function learning to develop an autoregressive gen-148 148

erative model capable of generating 3D shapes with internal structures. However, the149 149

complexity of the auto-regressive generation model increases considerably with the in-150 150

put sequence length [53]. This problem is exasperated when the data representation is a151 151
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Fig. 2: Approach: Key ingredients of our pipeline are vector quantized autoencoder, un-
signed distance field (UDF), and latent transformer. The first stage is learning VQUDF
which is a vector quantized autoencoder model that takes voxelized point clouds as in-
put to a CNN-based encoder and utilizes an implicit decoder to output a UDF of the 3D
shape. UDF ensures rich internal details are retained in a continuous data representation.
Latent codes from the learned VQUDF are used to train an autoregressive transformer.
This transformer learns to generate novel latent codes at test time. An implicit decoder
then decodes generated latent codes to output a UDF. A 3D shape is then rendered from
the UDF as a more tractable data format such as a point cloud.

dense 3D model. Therefore, instead of representing a 3D model as voxels, point clouds,152 152

or discrete patches directly, we learn a compact and discrete representation whereby a153 153

shape is encoded using a codebook of context-rich parts. This allows an auto-regressive154 154

transformer model to capture long-range interactions between these contextual parts155 155

and effectively model the distributions over the full shapes. Figure 2 details the com-156 156

plete framework of our approach. Our method can be sectioned into two parts. First,157 157

we describe a form of an autoencoder, namely Vector Quantized Unsigned Distance158 158

Field (VQUDF), which learns a context-rich codebook, as detailed in Sec. 3.1. Then we159 159

present the latent transformer architecture as a generative model capable of producing160 160

novel shapes, as outlined in Sec. 3.2.161 161

3.1 Sequential Encoding with VQUDF162 162

A 3D shape is represented as a point cloud input denoted by X ∈ RN×3. To harness163 163

the power of transformers in the generation, we encode X into a discrete sequence of164 164

tokens. This discrete sequence must encapsulate the complete geometric information of165 165

the 3D shape. Inspired by ideas from [52,55,31], we formalize the encoder, codebook,166 166

and decoder architecture for generating 3D shapes with internal geometry using UDFs.167 167

Encoder: To generate 3D shapes with internal structures using transformers, we require168 168

a compact and discrete representation of the input shape that maintains high geometric169 169

resolution. The input to our encoder is a sparse voxelized point cloud defining a 3D170 170

shape. When dealing with voxel data representations, capturing local spatial context171 171

is essential since the correlation between neighboring voxels significantly impacts the172 172
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overall shape of the object. CNNs are well-suited for capturing prior inductive bias173 173

of strong spatial locality within the images [15]. By incorporating local priors from174 174

CNNs, we can effectively capture the spatial context of the input data and encode it into175 175

a compact feature grid utilizing ideas from neural discrete representation learning [52].176 176

To achieve this, the first step is to employ a CNN-based feature extractor E called IF-Net177 177

[13]. IF-Net takes a sparse voxelized point cloud X and maps it to a set of multi-scale178 178

grid of deep features F1, ...,Fm s.t. Fk ∈ FK3

k and Fk ∈ Rc. Note that the resolution179 179

K reduces, and the number of channels c increases as k increases. For tractability, we180 180

interpolate feature grids F1, ...,Fm−1 to the scale of final feature grid Fm using trilinear181 181

interpolation. This provides us with a good trade-off between model complexity and182 182

shape details. A concatenation of F1, ...,Fm along the channel dimension results in a183 183

compact feature grid Z ∈ RK3×C , i.e. Z is a continuous latent feature representation.184 184

Quantization: A discrete description of the world can aid learning by compressing in-185 185

formation in many domains, such as language or images [52,32,9]. We posit that 3D186 186

models are no exception and can greatly benefit from discrete representations. In addi-187 187

tion, to utilize the generative transformer model, the input shape is preferably a discrete188 188

sequence. Therefore, we employ vector quantization to transform the continuous la-189 189

tent feature representation Z into a sequence of tokens T using a learned codebook190 190

B of context-rich codes B = {bi}Vi=1 ⊂ Rnz where nz is the length K × C of a191 191

code. Following a row-major ordering [16], each feature slice zi ∈ Z is clamped to the192 192

nearest code in the codebook B using equation 1, fig. 2, which results in a quantized193 193

feature grid Ẑ. A sequence of tokens T is then defined as the ordered set of indices194 194

(ti)∀i ∈ {1, .., |T |}.195 195

ti = argminj∈{1,..,V }∥zi − bj∥ (1)

Decoder: As stated earlier, we aspire to learn an implicit representation of shapes to196 196

benefit from properties of such models, for example, no watertight shape restrictions,197 197

arbitrary resolution, and encoding internal structures. To achieve this, we train a decoder198 198

to output an unsigned distance field UDF(p,S) = minq∈S∥p − q∥ which is a function199 199

that approximates the unsigned distances between the sample points p and the surface of200 200

the shape S. Formally, the decoder is defined as a neural function D(Ẑ,p) : RK3×C ×201 201

R3 7→ R+ that regresses the UDF from a set of point p conditioned on the latent discrete202 202

feature grid Ẑ. The dense point cloud algorithm provided by Chibane et al. [12] is used203 203

further to convert UDF to a final point cloud denoted by X̂.204 204

Training VQUDF: The training process involves learning the encoder E , codebook B,
and the decoder D simultaneously. The overall loss function is denoted in equation (2).

LVQUDF(E ,B,D) =∥ UDF(p,S)− UDFgt(p,S) ∥22 +Lc (2)

The first term denotes the reconstruction loss, which is computed as the difference be-205 205

tween predicted and ground truth UDFs. This method is different from the commonly206 206

utilized approach of computing loss between predicted and true point clouds. The sec-207 207

ond term Lc denotes the commitment loss in equation (3).208 208

Lc =∥ sg[E(X)]− Ẑ ∥22 + ∥ sg[Ẑ]− E(X) ∥22 (3)
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Different from vanilla NDF training, our pipeline has a non-differentiable quantization209 209

operation. Following previous works [2,52], we utilize a straight-through gradient es-210 210

timator to circumvent this problem. Under this approach, gradients are simply copied211 211

over from the decoder to the encoder. This method ensures joint training of the code-212 212

book, the encoder, and the decoder.213 213

3.2 Generating a Sequence of Latent Vectors214 214

Latent Transformer: Transformers have shown tremendous performance in generat-215 215

ing images by modeling them as a sequence of tokens and learning to generate such216 216

sequences [39,34]. Transformers are unconstrained by the locality bias of CNNs al-217 217

lowing them to capture long-range dependencies in images. 3D models with internal218 218

structures also exhibit long-range dependencies, for example, the number and shape219 219

of seats in a car depend on the body being either a sedan or a sports car. Previous220 220

works [60,18,54,55,31,11] have successfully demonstrated capturing these dependen-221 221

cies using transformers for 3D models. We represent 3D shapes as a sequence of to-222 222

kens T = (t1, ..., t|T |) resulting from our trained VQUDF framework. Recall that223 223

each token ti is an index of the closest codebook latent embedding to the continu-224 224

ous latent feature grid. The generation of shapes is modeled as an autoregressive pre-225 225

diction of these indices. A transformer learns to predict the distribution of the next226 226

indices given prior ones. The likelihood of the complete sequence T is described as227 227

p(T ) =
∏|T |

i=1 p(ti|t1...i−1).228 228

Transformer Training: The generation of latent codes as a sequence of tokens using
transformers is highlighted in Fig. 2. The learned weights of the trained VQUDF au-
toencoder are frozen before the training of the transformer. VQUDF is first used to
create a training dataset of 3D shape latent embeddings. These latent embeddings are
used in the training of the transformer. The training objective for generation is maxi-
mizing the log-likelihood of tokens in a randomly sampled sequence to represent the
3D shape p(T ):

LTransformer = Ex∼p(x)[−log p(T )] (4)

After training, this model starts with the [START] token and predicts the next indices229 229

forming a complete sequence T until a [END] token is predicted. By mapping indices230 230

in the sequence T back to the corresponding codebook entries, a discrete latent feature231 231

grid Ẑ is recovered. The 3D shape is then reconstructed using the implicit decoder D,232 232

which results in a UDF from which point cloud X̂ is extracted as in [13].233 233

4 Experiments234 234

This section thoroughly evaluates our proposed approach on the standard object cate-235 235

gories of Cars, Planes, and Chairs from ShapeNetCore [4] dataset. Additionally, we236 236

curate a new dataset named ’Full Cars’, which constitutes a subset of the Cars cate-237 237

gory of the ShapeNetCore v2 dataset, on which we evaluate our proposed approach238 238
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and competing methods on their ability to generate shapes with internal structures. Our239 239

experiments demonstrate our methods’ effectiveness in generating high-quality shapes240 240

with internal structures. We compare our point cloud generation results against multi-241 241

ple SOTA point cloud generation baselines and show good qualitative and quantitative242 242

results on shape generation. More qualitative results as well as an ablation on the use of243 243

UDF versus SDF in our approach are given in the supplementary material.244 244

4.1 Implementation Details245 245

We train our models in two stages. First, we train the VQUDF module, followed by a la-246 246

tent transformer module. For training, we utilize stock hardware comprising one Nvidia247 247

RTX Quadro GPU with 48GB of VRAM. All code is written in PyTorch [40] whereby248 248

a portion is acquired from open repositories of [13,16]. For training both modules, we249 249

use a batch size of 1 and the Adam optimizer. For VQUDF training, we employ a learn-250 250

ing rate of 1e-6 and ReLU activation, whereas the transformer’s training uses a learning251 251

rate of 4.5e-6. Furthermore, the transformer has 12 layers and 8 attention heads. The252 252

length of the input sequence to the transformer model is set as 7952; the codebook size253 253

is 8192, with each codebook having a dimensionality of 512.254 254

Datasets We conduct experiments on the standard object categories of Cars, Planes,255 255

and Chairs from ShapeNetCore [4] dataset. Additionally, we curate a new dataset named256 256

’Full Cars’, which constitutes a subset of the Cars category of the ShapeNetCore v2257 257

dataset. The ’Full Cars’ dataset includes cars with diverse and realistic internal geome-258 258

try such as seats, steering wheels, shift sticks, and other internal structures. The primary259 259

objective of this curation of the dataset is to demonstrate the capability of our model260 260

in generating novel and realistic shape interiors. It is also essential to note that there261 261

is a strong interdependence between such internal structures and outer car shapes: for262 262

example, sports cars are expected to have quite specific types of seats. Further descrip-263 263

tions of datasets and additional training details, including the architecture of our model,264 264

are presented in the supplementary material.265 265

4.2 VQUDF Reconstruction Performance266 266

The input point cloud is sampled and voxelized before feeding into the VQUDF en-267 267

coder. The number of points sampled from different datasets and considered voxel res-268 268

olution during training of the VQUDF module are presented in Table 1. Recall that the269 269

input 3D shape is encoded into a feature grid Ẑ where each channel comprises a feature270 270

block of resolution K3. The quality of encoded information and generation capability271 271

depends on the dimensionality and resolution K of the 3D latent feature grid Ẑ. Fig.3272 272

shows reconstruction results of the VQUDF module on the Full Cars dataset with dif-273 273

ferent values of K such that resolution of the 3D latent feature becomes Ẑ ∈ R643×C ,274 274

Ẑ ∈ R163×C and Ẑ ∈ R83×C respectively, where C is the number of channels. Note275 275

that the fidelity of internal geometries increases progressively with the dimensionality276 276

K of Ẑ. However, increased K results in a large quantized sequence length T making277 277

transformer training difficult. Hence, a good trade-off between geometrical fidelity and278 278

memory footprint is achieved by selecting Ẑ ∈ R163×C which is then processed into a279 279

tractable sequence of tokens to generate shapes with internal details.280 280
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Fig. 3: Reconstruction Results: Our model reconstruction results with different latent
space resolutions 643, 163 and 83 respectively (left to right).

Table 1: Number of points sampled and voxel resolution considered for VQUDF train-
ing for different datasets. The Full Cars dataset used for evaluating the ability of models
to generate shapes with internal structures is curated from ShapeNet Cars by us.

Dataset Points Sampled Voxel resolution

ShapeNet Cars 10000 256³
ShapeNet Planes 5000 32³
ShapeNet Chairs 4000 32³

Full Cars 10000 256³

4.3 Baselines281 281

We use the following baselines which generate novel 3D point clouds to compare with282 282

our point cloud generation. The first baseline is Graph Convolution GAN [51], which283 283

relies on standard GAN-based generation and employs localized operations in the form284 284

of graph convolutions to generate point clouds. Another baseline is Diffusion Model.285 285

Luo et al. [27] employs denoising diffusion probabilistic models for point cloud gener-286 286

ation. Lastly, we also compare against Pointflow [56], which utilizes normalizing flows287 287

for the point cloud generation. These models naturally carry the ability to learn inside288 288

details of 3D models, provided that they have been trained on datasets with internal289 289

structures. However, they do not utilize an implicit continuous representation to capture290 290

internal details. Therefore, these approaches are not only limited to a fixed number of291 291

points generation but also their ability to model insides in predicted 3D shapes.292 292

4.4 Metrics293 293

For quantitative evaluation, we use three different metrics following previous works.294 294

MMD: Minimum matching distance (MMD) indicates the faithfulness of generated295 295

samples with real data. A lower MMD indicates that generated samples are realistic296 296

towards ground truth samples297 297

COV: Diversity is an important aspect of generative models. A high coverage score298 298

(COV) indicates that the model does not suffer from mode collapse and has high sample299 299

diversity.300 300

JSD: Jenson-Shannon divergence (JSD) computes the symmetric similarity between301 301

distributions of generated samples and reference samples. A lower value of JSD is de-302 302

sirable. However, this metric is dependent on the selection of the reference set.303 303
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FullFormer (Ours) [51] [27] [56]

Fig. 4: Outer Hull Generation: Our models show high-quality point cloud generation
results when trained on object categories of chairs, aeroplanes of ShapeNet dataset and
visually improve over previous methods such as GraphCNN-GAN [51], Diffusion [27]
and PointFlow [56].

Fig. 5: Generation: Diverse generation results from our FullFormer model on the Full
Cars dataset with internal structures. The high degree of detail of generated shapes is
clearly visible in the dense point clouds. Note that, not only seats specific to car type,
but also minute details such as steering wheels are generated. High point clouds quality
even allows to compute surface meshes (bottom) of the non-watertight shapes with
internal structures.

4.5 Qualitative Results304 304

In this section, we show the qualitative performance of our generative model on the305 305

considered datasets.306 306

ShapeNet: The samples of point cloud generation results with 2048 points of our model307 307

against baseline models for the classes chairs and airplanes are presented in Fig. 4. We308 308

highlight that our model does not rely on any priors in the form of preset tokens in the309 309

input sequence, thus ensuring the complete unconditioned generation of the results. The310 310

performance of our method is apparent with less noisy and realistic shape generations.311 311

We further note that immense diversity is present in the shapes generated, whereby all312 312

generated samples in Fig. 4 are of distinct visual designs. High fidelity is also percep-313 313

tible across the generated examples. More results of generated mesh samples of Planes314 314

and Chairs are provided in the supplementary material.315 315
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Full Cars: We use the Full Cars dataset to showcase the veracity of our approach’s key316 316

feature to generate high-fidelity outer shells with intricate internal geometric details.317 317

The qualitative results of randomly generated cars are presented in Fig. 5 demonstrating318 318

the efficacy of our model in generating samples with rich internal geometric structures.319 319

Additionally, generated cars in Fig. 5 demonstrate a remarkable level of diversity, for320 320

example, varied genres of cars with different numbers of seats. We also present in Fig.321 321

6 the comparative point cloud generation results with uniformly sampled 2048 points322 322

of randomly generated cars from Diffusion [27], PointFlow [56] and our FullFormer.323 323

We retrain other comparative methods on the ‘Full Cars’ dataset by processing input324 324

data as required for the methods. Our approach achieves a clear visual superiority over325 325

comparative methods, which fail to generate any discernible internal structures. It is326 326

also important to note that shapes in the training data lack dense internal geometries of327 327

high fidelity. Despite this limitation, our method is able to learn a general model which328 328

is capable of generating shapes with internal structures given noisy real-world raw data.329 329

[27] [56] [51] FullFormer (Ours)

Fig. 6: Generation Comparison: From left to right (Diffusion [27], Point Flow [56],
Graph-CNN GAN [51], FullFormer (Ours)). Our model (with 163 latent space resolu-
tion) shows high-quality internal structure generation results compared to other men-
tioned models. It is apparent that other comparative models do not achieve discernable
internal structures in generation results. All point clouds in this figure are sampled to
2048 points.

4.6 Quantitative Results330 330

In this section, we present a quantitative evaluation of our model’s performance in331 331

point cloud generation. The metrics discussed in section 4.4 are tabulated in Table332 332

2. Our method achieves state-of-the-art performance on all the metrics for the ‘Full333 333

Cars’ dataset, validating the capability of FullFormer in generating complete shapes334 334

with rich insides. High coverage and low JSD further demonstrate that generated mod-335 335

els exhibit high diversity which we also observe visually. Moreover, we achieve the336 336

best performance in MMD and coverage across all classes of cars, chairs, and planes337 337

of the ShapeNet dataset compared with other baselines. While it is true that FullFormer338 338

appears to achieve higher JSD values than PointFlow [56] and Diffusion [27] for the339 339

ShapeNet dataset, however qualitative results continue to show diversity in all the con-340 340

sidered datasets. Therefore the lower score of JSD for the ShapeNet dataset is hypoth-341 341

esized to be a cause of reference set selection.342 342
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4.7 Limitations343 343

Unlike the high-fidelity achieved on outer shells, generated internal details exhibit lower344 344

quality. A sampling of the feature space limits the details of the shape’s geometry. Our345 345

model evaluation is also constrained by the scarcity of available shape datasets with rich346 346

internal structures. Furthermore, we used off-the-rack methods to mesh our dense point347 347

cloud results which degraded the quality of our results, as there is no direct algorithm348 348

to extract the surface of 3D shapes from unsigned distance fields. Especially on fine349 349

details and thin structures, the quality of generated shapes is not easy to assess from350 350

point clouds.

Table 2: We quantitatively compare the point cloud generation results of our method
with GraphCNN-GAN [51], Diffusion [27] and PointFlow [56]. We report minimum
matching distance (MMD), coverage score (COV), and Jenson and Shannon divergence
(JSD) for comparison. We use Chamfer distance (CD) for MMD and COV calculations.
MMD scores are multiplied by 103 and JSD are multiplied by 10−1. Our proposed
FullFormer improves consistently over all previous methods in terms of MMD and
COV. It also improves over previous methods in terms of JSD on the Full Cars dataset.
Dataset GraphCNN-GAN [51] Diffusion [27] PointFLow [56] Ours (FullFormer)

MMD↓ COV↑ JSD↓ MMD↓ COV↑ JSD↓ MMD↓ COV↑ JSD↓ MMD↓ COV↑ JSD↓

ShapeNet Cars 3.18 16 4.67 1.4 17.7 2.21 1.28 29.67 3.16 1.13 29.72 2.29
ShapeNet Planes 1.1 31.09 1.75 0.98 36.73 0.65 1.41 35.87 1.06 0.92 37.37 0.83
ShapeNet Chairs 4.213 33.5 1.24 3.79 36.2 0.42 4.19 33.23 0.82 3.79 37 1.06
Full Cars 2.32 20 3.81 1.24 21.23 2.83 1.18 24.85 3.39 0.93 25.07 2.72

351 351

5 Conclusion352 352

In this work, we present FullFormer, a novel two-stage generative model designed to353 353

generate 3D objects with intricate internal structures. Our approach employs a vector354 354

quantized autoencoder (VQUDF) to learn 3D shape geometry in the first stage and355 355

employ a latent transformer model in the second stage for shape generation. This la-356 356

tent transformer is trained autoregressively on indices of quantized shape embeddings357 357

learned by the VQUDF, making it computationally efficient. Consequently, the trained358 358

transformer can generate latent codes unconditionally. Generated codes are fed into a359 359

learned decoder (VQUDF) to output UDF representation from which 3D shapes are360 360

retrieved ensuring that generated shapes have details of internal structure and high-361 361

fidelity outer surface at arbitrary resolution. We further demonstrate superior qualita-362 362

tive and quantitative point cloud results compared to previous state-of-the-art methods.363 363

The ability to generate high-quality 3D shapes has implications across various domains,364 364

from computer graphics and virtual reality to manufacturing and design, paving the way365 365

for exciting future research in the field.366 366
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